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This paper further develops the conventional Weibull/weakest-link model by incorporating
the within-fiber diameter variation. This is necessary for fibers with considerable
geometrical irregularities, such as the wool and other animal fibers. The strength of wool
fibers has been verified to follow this modified Weibull/weakest-link distribution. In
addition, the modified Weibull model can predict the gauge length effect more accurately
than the conventional model. C© 2002 Kluwer Academic Publishers

1. Introduction
Many factors contribute to the differences in fiber
tensile behavior, including fiber geometrical shape,
morphological structure and fiber fracture mechanism.
Griffith first proposed that fracture initiates at flaws and
the final failure is caused by the propagation of the crack
from the flaw [1]. Unlike most brittle fibers that are ge-
ometrically uniform, natural fibers such as wool exhibit
between-fiber and within-fiber diameter variation. Al-
though it has been suggested that the fracture of wool
is also caused by the propagation of a crack from a flaw
[2, 3] or from regions with high local stress concentra-
tion [4], previous works [5] indicated wool fibers also
break where the diameter is minimum. In addition, our
recent research suggests that between-fiber and within-
fiber diameter variations of wool are closely related to
its tensile behavior [6, 7]. So both fiber flaws (mor-
phological defects) and fiber diameter variations affect
the tensile behavior, particularly for non-uniform fibers.
The weakest point in a fiber could be where there is
an internal flaw or where fiber diameter is small or a
combination of both. If this weakest point reaches its
breaking limit, then the whole fiber breaks. This “weak-
est link” concept was first proposed by Peirce to predict
the strength and its variation of long cotton yarns [8].
Combining with this weakest-link concept, the simple
Weibull/weakest-link distribution of the strength of a
long fiber can be easily derived from the strength dis-
tribution of many independent unit links of the fiber
[9]. It was claimed by Coleman [10] that Weibull dis-
tribution “fits most naturally the theory of breaking
kinetics”.

Because of its simplicity and the consistency with
the weakest link concept, the Weibull distribution has

become a useful tool to explain the strength variation
of fibers. It has been widely applied to geometrically
uniform fibers, such as the so-called “classical fibers”
[11–14]. It has also been applied to time dependent
polyester yarns [15], some polymeric fibers [16] as well
as to natural coir fibers [17]. The strength variations
of these uniform fibers are deemed to be caused by
randomly distributed fiber flaws and defects.

The strength of materials decreases with an increase
in size [14, 17–19 etc.]. This has been generally ex-
plained by the existence of a larger number of flaws in
a larger material volume. By combining the classical
Weibull distribution with the weakest link theory, the
Weibull/weakest-link model can be utilized to predict
the scale effect. However, it was often found that there
are great discrepancies between strength predicated by
the conventional Weibull model and the experimental
data [18, 20, 21]. Thus the multi-modal and the three-
parameter Weibull distributions as well as some other
modified Weibull models were introduced to improve
the accuracy of prediction [18, 22–25].

Wool fibers are well known visco-elastic fibers and
their diameters vary greatly not only among fibers but
also along the fiber length. It is a good sample of fibers
with geometrical irregularities. Although the Weibull
model has been widely applied to many fibers, very
limited work has been done [26] to verify that it is also
applicable to wool fibers. No work has been reported on
the applicability of the Weibull or the modified Weibull
model to predicting the scale effect of wool fibers. This
work first introduces an exponential parameter into the
conventional Weibull model. The tensile behavior, par-
ticularly the strength of wool is verified to fit this modi-
fied Weibull model. The scale effect is then examined
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and it is shown that the gauge length effect on fiber
strength can be accurately predicted by the modified
Weibull model.

2. Theoretical background
2.1. Weibull distribution
Based on the weakest-link theory, Weibull [9] proposed
a simple distribution of material strength x :

P = 1 − exp

[
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(
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)m]
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(
x

x0

)m]

(1)

where P is the failure probability of a long fiber con-
nected by n independent segments, x is generally the
strength, V is the fiber volume, V0 is the volume of a
unit link or a segment, m is Weibull modulus and x0 is
scale parameter.

From this simple Weibull distribution, the average
and CV value of x can be obtained:

x̄ = x0

(
V

V0

)−1/m

�[1 + (1/m)] (2)

CV = {�[1 + 2/m] − �2[1 + (1 + m)]}1/2

�[1 + (1/m)]
(3)

The CV of the variable x is determined by Weibull
modulus only.

2.2. Gauge Length Effect
From the conventional Weibull distribution (Equa-
tion 1), for constant fiber diameter, the average value
of the variable x at gauge length L2 can be calculated
from that at gauge length L1:

x̄2 = x̄1

(
L2

L1

)−1/m

(4)

where x1 and x2 are the fiber strengths at gauge length
L1 and gauge length L2 respectively.

The gauge length effect predicted by this formula de-
viates greatly from the actual value [18, 20, 21]. Watson
and Smith [25] as well as Gutans and Tamuzs [27] intro-
duced a modified Weibull model (the WSGT function
named by Wagner [19]):

P = 1 − exp

[
−
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)β(
x
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)m]
(5)

where L is the gauge length, L0 is the length of the
unit link of the fiber. β is a parameter (0 < β < 1) that
was proposed by Watson and Smith [25] to represent the
diameter variations. However, the exact physical mean-
ing of this parameter (β) was not pointed out clearly as
stated by Wagner [19].

The prediction of the gauge length effect from this
modified Weibull model is then:

x̄2 = x̄1

(
L2

L1

)−β/m

(6)

The conventional (Equation 1) and many modified
Weibull models (Equation 5, etc.) are widely applied

to uniform brittle and polymeric fibers. Wool is quite
different from these fibers especially in its variable ge-
ometrical structure. Hence it is necessary to examine
how the tensile behavior of wool fits the Weibull model
after incorporating its distinct diameter variations.

3. Materials and methods
3.1. Materials
Fibers investigated in this work are randomly extracted
from a merino wool top after a top dyeing process.

3.2. Methods
Individual fibers were randomly and gently withdrawn
from the top after they were conditioned for more than
24 hours at 20 ± 2◦C and 65 ± 2% relative humidity en-
vironment. Then the fiber diameters of each single fiber
were measured at 40 µm intervals along its length on
the Single Fiber Analyzer (SIFAN) (BSC Electronics).

When measuring fiber diameters on SIFAN, the fiber
ends near two jaws are not accessible to the CCD cam-
era on the SIFAN instrument. This may lead to inac-
curate results for within-fiber diameter variations, es-
pecially for fibers with a short measuring length. To
eliminate this problem, each fiber was marked at two
points, and the distance (L) between the two marks
is shorter that the fiber length (L ′) between the jaws
(Fig. 1). This ensures that the fiber section between the
marks is fully scanned for fiber diameter, and only this
section (with a length L) will be used for tensile testing.

The relevant SIFAN settings used in the experiments
are given below:

Pre-tension: 1 cN
Diameter scanning: every 40 µm along fiber length
Fiber length (L): 10 mm, 20 mm, 50 mm, 100 mm

After the diameter measurements, single fibers were
then tested for tensile properties on an INSTRON ex-
tensometer with the following settings:

Cross-head speed: 20 mm/min
Gauge length: 10 mm, 20 mm, 50 mm, 100 mm

All tests were conducted under standard environmental
conditions (20 ± 2◦C and 65 ± 2% RH). The values for
fibers that broke at or near the jaws are discarded.

4. Results and discussion
4.1. A new modified Weibull model
The mean diameter, the coefficient of variations of di-
ameter along the fiber CVD, and tensile properties of

Figure 1 A diagram illustrating the diameter and tensile tests.
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T ABL E I Fiber diameter, within-fiber diameter variation and tensile behavior

Gauge Mean CVD within the Breaking Fiber strength Breaking
length diameter (µm) fiber (%) force (mN) (MPa) strain (%)
(mm) (CV) (CV) (CV) (CV) (CV)

10 mm 24.9 9.1 66.9 213.8 50.8
(N = 126) (17.0%) (19.5%) (41.2%) (17.6%) (28.3%)
20 mm 25.0 10.2 62.5 213.4 37.1
(N = 153) (18.4%) (18.8%) (43.6%) (17.8%) (37.4%)
50 mm 24.5 11.9 50.5 205.4 25.6
(N = 37) (13.1%) (19.3%) (32.6%) (14.0%) (44.0%)
100 mm 26.0 13.9 49.0 201.4 19.1
(N = 51) (15.1%) (18.0%) (36.4%) (18.3%) (49.4%)

N : sample number.

the wool fibers at gauge lengths of 10 mm, 20 mm,
50 mm and 100 mm respectively are listed in Table I.

The mean diameter in Table 1 is the average diameter
of N fibers, in which the diameter for every fiber is
the average value of the diameters measured at 40 µm
intervals along the fiber length. The CVD is the average
within-fiber diameter variation of N fibers in which the
within-fiber diameter variation of every fiber is based
on the diameters measured at 40 µm intervals along the
fiber length.

The gauge length effect is apparent from Table 1. The
average values of breaking force, strength and break-
ing strain all decrease with the increasing gauge length.
Interestingly, the within-fiber diameter variations in-
crease with the increasing gauge length. Our previous
work showed that the within-fiber diameter variation
has a negative impact on fiber fracture properties, for
fibers with a similar mean diameter [7]. It is naturally
inferred from these results that the gauge length effect
is not only caused by the large number of flaws but also
by the increased within-fiber diameter variation at the
long gauge length. The change of the average within-
fiber diameter variation with the gauge length is further
examined and shown in Fig. 2.

Fig. 2 shows that the average within-fiber diame-
ter variation increases exponentially with the gauge
length. Also the correlation coefficient of the logarithm
of within-fiber diameter variation and that of the gauge
length is very high (r2 = 99.47%). The following rela-
tionship between them can be obtained as:

ln (CVD) = 18.14 × 10−2 ln (L) + 1.78 + ε

(ε is a random error) (7)

Figure 2 Change of within-fiber diameter variation with the gauge
length.

So,

CVD = Aχ Lλ (8)

where A is a constant, χ = eε and λ = 18.14 × 10−2,
for the wool fiber examined.

From Equation 8, for a specified type of fibers mea-
sured under different gauge lengths,

CVD1

CVD2
= χ1

χ2

(
L1

L2

)λ

∝
(

L1

L2

)λ

(9)

Since the within-fiber diameter variation is the expo-
nential function of the gauge length, it should not be
ignored in predicting the gauge length effect. The para-
meter β in the WSGT model (Equation 5) is replaced by
the parameter λ and the Equation 6 has been changed to:

x2 = x1

(
L2

L1

)−λ/m

(10)

And the corresponding modified Weibull distribution is:

P = 1 − exp

[
−

(
V

V0

)λ( x

x0

)m]
(11)

where λ is the exponential parameter of the change
of within-fiber diameter variation with the gauge
length. Therefore, this modified equation has not only
considered the diameter variation between the fibers
(V = 1

4π D2L , ignoring the slight ellipticity of fibre
cross section), but also the within-fiber diameter vari-
ation (λ). What follows is a verification of this modi-
fied Weibull model (Equation 11) that incorporates the
within-fiber diameter variation.

4.2. Verification of the modified
Weibull distribution

Considering that fiber diameter changes from fiber to
fiber under a fixed gauge length, fiber volume V is
not a constant. Assuming y = xV λ/m , then Equation 11
becomes:

P = 1 − exp

[
−

(
y

y0

)m]
(12)

where, y0 = x0V λ/m
0 .

So,

ln(− ln(1 − P)) = m ln(y) − m ln(y0) = m ln(x)

+ λ ln(V ) − m ln(y0) (13)
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From Equation 13, ln(y) is linearly proportional to
ln(− ln(1 − P)) and the slope is the Weibull modulus m.

The method to obtain the Weibull modulus is
adopted from that of Wagner [19], using the follow-
ing procedure:

• Give an estimated Weibull modulus m ′, then
each y value can be calculated from x and
V (V = 1

4π D2L) of each fiber according to y =
xV λ/m ′

.
• Assign Po (Po = i/(N + 1), i = 1, 2 . . . N ) to ev-

ery ascending y value.
• Plot lny versus ln(− ln(1 − Po)), the slope of this

plot m can be obtained. If m �= m ′, then iterate
the procedures above until m = m ′. The Weibull
modulus is that when m is equal to m ′.

The goodness-of-fit test is carried out by using the
Kolmogorov–Smirnov test. The procedure is:

(1) Determine the maximum deviation (Dn) between
Po from Po = i/(N + 1) and P from the modified
Weibull probability (Equation 11).

Dn = Max · |Po − P|
(2) The critical value Dnc can be obtained from

Kolmogorov–Smirnov test table. For N > 35 and a sig-
nificance level of α = 0.05,

Dnc = 1.36

N
1
2

(3) If Dn < Dnc, the null hypothesis that the observed
data follow the Weibull distribution is accepted.

The Weibull plots of ln(− ln(1 − P)) − λ ln(V ) versus
ln(x) for fiber strength and breaking strain at 10 mm,
20 mm, 50 mm and 100 mm gauge lengths are shown
in Figs 3 and 4 respectively, in which k = λ.

The Weibull parameters and K–S goodness-of-fit test
are listed in Table II. The fiber strengths at four differ-

Figure 3 The modified Weibull plot of the fiber strength.

TABLE I I The Weibull parameters and K–S goodness-of-fit test

Weibull Scale
Gauge length (mm) modulus m parameter y0 Dn Dnc

10 Strength 6.6 197.2 0.05 0.12
Breaking strain 2.9 41.4 0.17

20 Strength 6.7 201.3 0.06 0.11
Breaking strain 2.2 29.1 0.14

50 Strength 7.9 199.2 0.06 0.22
Breaking strain 1.9 20.6 0.10

100 Strength 6.3 198.8 0.11 0.19
Breaking strain 1.9 16.4 0.08

ent gauge lengths all fit the modified Weibull distribu-
tion (Equation 11), while the breaking strain at 10 mm
and 20 mm gauge lengths failed the test. The gauge
length effect on fiber strength is compatible with the
weakest link concept. However, the breaking strain of
a fiber is not the strain at the position of flaw or mini-
mum fiber diameter but the average strain of every fiber
segments when the fiber breaks [7, 28]. Therefore, the
weakest link theory does not apply well to the breaking
strain.

The strength of this merino wool can be well repre-
sented by the modified Weibull distribution. That means
the distribution of its strength can be determined by
Weibull modulus m, scale parameter and another pa-
rameter λ—the exponential parameter of the change
of the within-fiber diameter variation with the gauge
length. If the distribution is known, then the average
and the variation of the strength can be obtained using
Equations 2 and 3.

4.3. Gauge length effect
Fig. 5 shows that the tensile strength and the breaking
strain of this merino wool decrease with the increas-
ing gauge length. So there exists the gauge length ef-
fect. The modified Weibull model can predict the gauge
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Figure 4 The modified Weibull plot of the breaking strain.

Figure 5 Gauge length effect.

Figure 6 A comparison between the experimental and the predicted val-
ues of average fiber strength (predictions are based on the results at
10 mm gauge length).

length effect on the fiber strength because it fits the dis-
tribution very well.

In order to predict the average strength at differ-
ent gauge lengths simply from that at another gauge
length, the diameter variation among fibers can be ig-
nored because their average diameter at each gauge
length should be close to each other when the sam-
ple size is large. The predictions of the gauge length
effect from our modified Weibull model (Equation 11)
are compared in Figs 6 and 7 with that from the conven-
tional Weibull model (Equation 1) and the experimental
values.

Figure 7 A comparison between the experimental and the predicted val-
ues of average fiber strength (predictions are based on the results at
100 mm gauge length).

Figs 6 and 7 clearly show that the modified model,
incorporating the within-fiber diameter variation, can
predict the gauge length effect more accurately than
the conventional Weibull distribution. Therefore, if the
average fiber strength at one gauge length is known,
then its average strength at another gauge length can be
predicted. This is particularly significant when the fiber
strength at very short gauge length, which is difficult to
achieve experimentally, is needed.

5. Conclusions
A new modified Weibull model is introduced in this
work, which incorporates not only the diameter vari-
ation among fibers but also the within-fiber diame-
ter variation. The fiber strength of merino wool from
a dyed top has been verified to fit this modified
Weibull/weakest-link model. In addition, the gauge
length effect on the fiber strength can be more accu-
rately predicted from the modified Weibull model than
from the conventional Weibull model.
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